# Audio Signal Classification Using Linear Predictive Coding and Random Forests

#### Lăcrimioara GRAMA, Corneliu RUSU

Signal Processing Faculty of Electronics, Telecommunications and Information Technology Basis of Electronics Department Signal Processing Group



The 9th Conference on Speech Technology and Human-Computer Dialog – July 6, 2017

## Outline

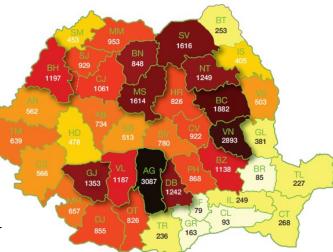
- Research aim
- Acoustic Wildlife Intruder Detection System
- Wildlife Database
- Linear Predictive Coding
- Random Forests
- Stratified 10-fold cross validation
- Results
- Conclusion

### Research Aim

- Audio signal classification system based on Linear Predictive Coding and Random Forests
  - Acoustic wildlife intruder detection system (WIDS)
- Sound classification has been the focus of intensive research and several approaches have been proposed in different domains
  - Medical applications: hearing aids and remote monitoring
  - Identification of the musical instruments from an audio recording
  - Environmental sound classification
  - Classification of the kitchen sounds
  - Vehicle identification

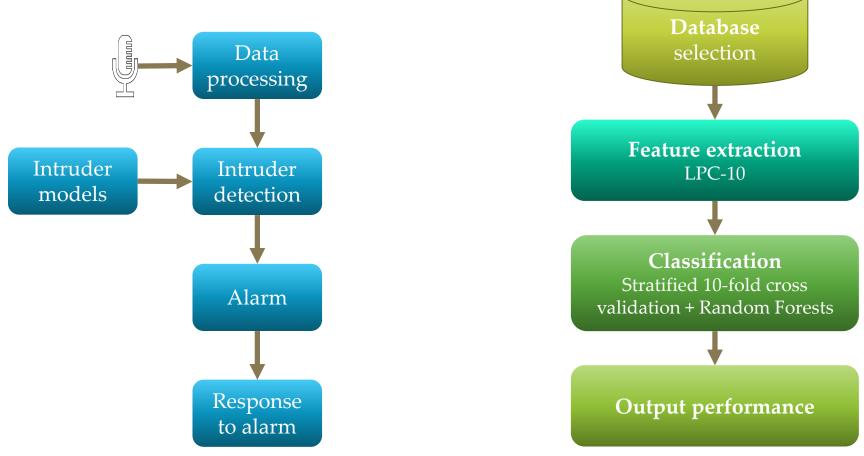
### Why this research?




- The number of events that imply
  - Illegal logging, hunting,
  - Trespassing of natural reservations, parks, forests

increased so much in the past decade

- ⇒ On a high demand became the design of WIDS
- To detect in time unwanted activities within the protected areas + help the authorities to take an action


# Why this research?

- Over 25 environmental agencies and organizations world wide, are being proactive in tracking illegal logging and hunting
- About 25 million birds are killed illegally in the Mediterranean every year [*BirdLife International* 2017]
- Romania: in 2015 the authorities registered 34 870 cases of illegal logging, which means 96 cases/day [*Greenpeace 2015*]
  - Regarding the gravity of the deeds, of all cases of illegal logging recorded in 2015, 32% of them were classified as criminal offences, while 68% were contraventions





## Acoustic Wildlife Intruder Detection System



# Wildlife Database

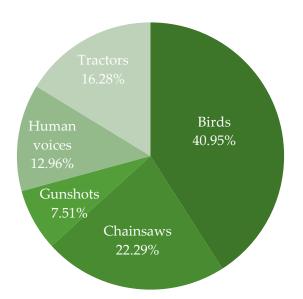


**Birds dataset** – 654 audio files originated from 70 different species of birds (Internet)



**Chainsaws dataset** – 356 audio files originated from 18 different types of chainsaws (SPG)

**Gunshots dataset** – 120 audio files originated from 40 different types of guns (Internet)




**Human voice dataset** – 207 speech sounds originated from 50 different former students from the TUCN



**Tractors dataset** – 260 audio files originated from 17 different types of tractors (SPG)

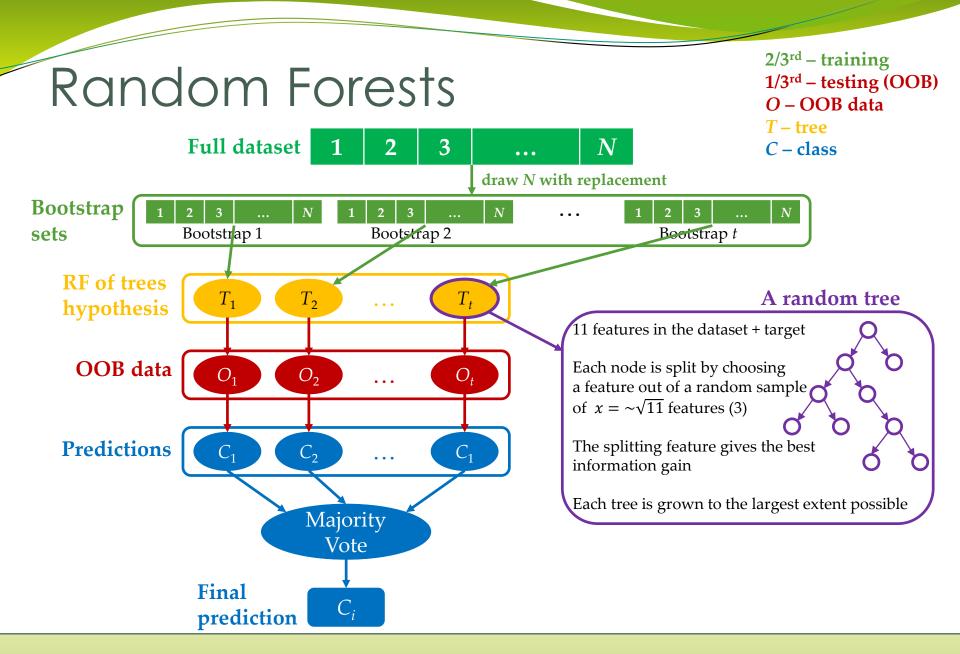
- 16 kHz, 16-bit
- None of the audio signals are studio recordings ⇒ they are subject to some additive noise from surroundings



#### Linear Predictive Coding Coefficients

• Fetures vector 
$$F_k = \begin{bmatrix} \sigma_k^2 & a_{k,1} & a_{k,2} & \dots & a_{k,10} \end{bmatrix}$$
  
• Fetures matrix  $F_{Nx11} = \begin{bmatrix} \sigma_k^2 & a_{k,1} & \cdots & a_{1,10} \\ \sigma_k^2 & a_{N,1} & \cdots & a_{N,10} \end{bmatrix}$   
• Fetures matrix  $F_{Nx11} = \begin{bmatrix} \sigma_k^2 & a_{N,1} & \cdots & a_{N,10} \\ \sigma_k^2 & a_{N,1} & \cdots & a_{N,10} \\ \sigma_k^2 & a_{N,1} & \cdots & a_{N,10} \end{bmatrix}$   
•  $N = 1597$  - number of audio files

## Why Random Forests?


- Acoustic WIDS look for suspiciouss sound signals
  - Attack/unauthorized access to the natural environment
  - At an abstract level WIDS purpose to classify the input correctly as non-intruders or intruders
- Tradition systems can detect known intruders but cannot identify unknown ones
  - ⇒ Nowadays machine learning techniques are attempting to be apply to this area of cybersecurity
- Many industries use machine learning techniques to better automate
  - Security screening
  - Border entry

- Loan analytics
- Health care

- College applicant selection
- Almost all kind of stuffs can be tackled with machine learning in order to take good decisions

## Why Random Forests?

- IBM machine learning techniques
  - Applied to historical alert data
    - Can significantly improve classification accuracy
    - Can decrease research time for analysts
    - Can supplement analysts with additional data and insights to make better judgments
  - Very effective
    - In the elimination of white noise
    - Classification of benign data with a high degree of accuracy
      - For our framework, the benign data are the non-intruders
  - Machine learning and security are old friends
  - $\Rightarrow$  We should use for classification Random Forests



## Stratified 10-fold cross validation

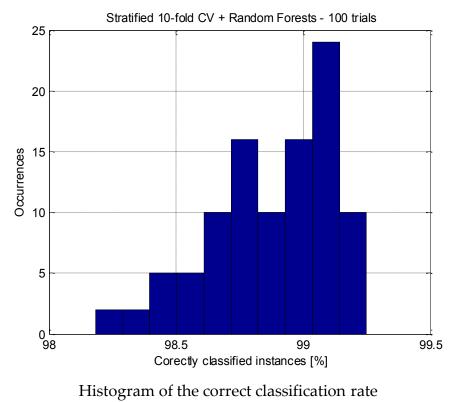
| B<br>C<br>H<br>T |        |        |        |        |         |
|------------------|--------|--------|--------|--------|---------|
| Database         | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 10 |

#### • Stratification

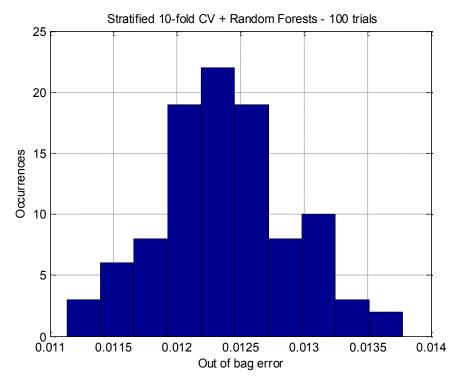
- Is important for classification problems involving imbalanced datasets
- Preserves classes distributions during training and testing
- Reduces the estimate's variance

SpeD 2017 | Audio Signal Classification Using Linear Predictive Coding and Random Forests

Training data


Testing data

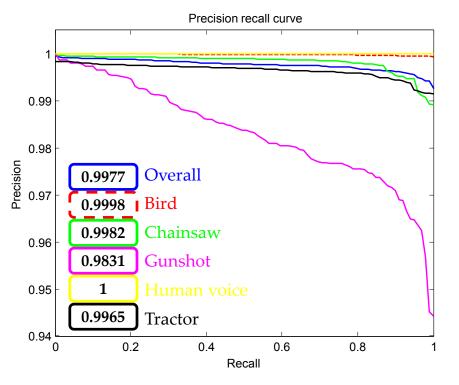
# Results




- 49 classifiers
  - Open source software issued under the GNU General Public License
  - A collection of machine learning algorithms for data mining tasks
  - Tools for data pre-processing, classification, regression, clustering, association rules, and even visualization
- 10 times stratified 10-fold cross validation
  - 27 classifiers out of 49 average CCR >90%
  - Random Forests

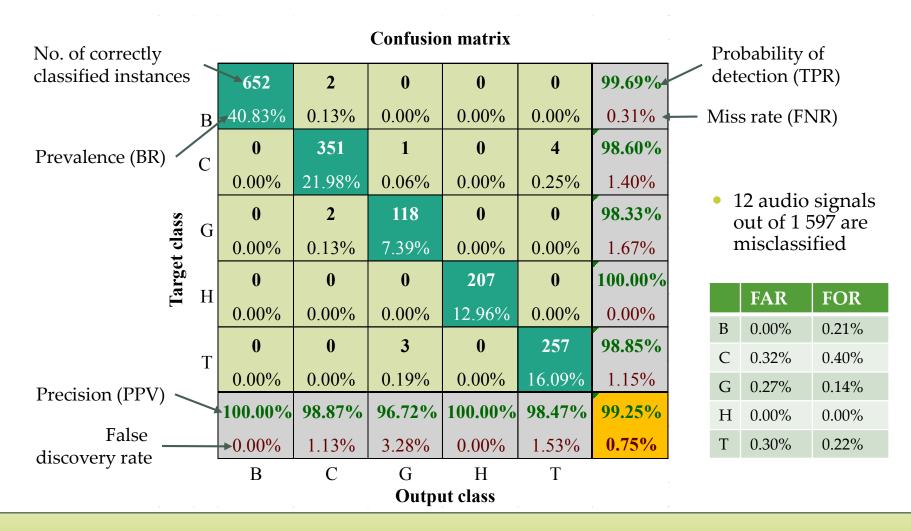
| Classifier                   | Average CCR [%]<br>(St.Dev.) |  |  |  |
|------------------------------|------------------------------|--|--|--|
| Bagging                      | 94.88 (1.73)                 |  |  |  |
| Logistic                     | 92.77 (1.57)                 |  |  |  |
| Multilayer Perceptron        | 93.35 (1.72)                 |  |  |  |
| SVM<br>(linear kernel)       | 97.64 (1.14)                 |  |  |  |
| SVM<br>(radial basis kernel) | 98.90 (0.81)                 |  |  |  |
| lazy.IBk                     | 98.52 (0.98)                 |  |  |  |
| lazy.IBkLG                   | 98.52 (0.98)                 |  |  |  |
| lazy.KStar                   | 98.70 (1.04)                 |  |  |  |
| Logit Boost                  | 92.60 (1.95)                 |  |  |  |
| CHIRP                        | 92.68 (1.92)                 |  |  |  |
| JRip                         | 92.75 (2.10)                 |  |  |  |
| PART                         | 94.84 (1.64)                 |  |  |  |
| J48                          | 94.70 (1.94)                 |  |  |  |
| Logistic Model Tree          | 96.96 (1.61)                 |  |  |  |
| Random Forest                | 98.95 (0.91)                 |  |  |  |
| Random Tree                  | 95.97 (1.58)                 |  |  |  |
| REP Tree                     | 92.13 (2.37)                 |  |  |  |




- 100 times stratified 10-fold cross validation
- Test phase
- Averaged CCR of each run
  - Minimum: 98.183% (frequency of apparition 1)
  - Maximum: 99.249% (frequency of apparition 10)
  - Mean value: 98.879%; Std.Dev.: 0.246



Histogram of the out-of-bag error


 $\Rightarrow$  good model for classification

- OOB error is evaluated by computing the error rate for each class and then averaging over all classes (the misclassification probability)
- Averaged OOB of each run
  - Minimum: 0.01113
  - Maximum: 0.01378
  - Mean value: 0.01239; Std.Dev.: 0.00053



Comparison of classes performance in PR space

- Precision vs recall curve insensitive to classes distribution
- One-vs-all approach
  - I.e., the dotted red line labeled 'Bird' means that the positive class is the class of birds, while the negative class consists of chainsaws, gunshots, human voices and tractors
    - All five possible variations are illustrated



SpeD 2017 | Audio Signal Classification Using Linear Predictive Coding and Random Forests

## Conclusion

- A model for audio signal classification: LPC + RF
- The signals under classification belong to the class of sounds from WID applications
- The step by step model building was illustrated
- Evaluation of the proposed classification system: 100 x stratified 10fold CV
- Multiclass classification average CCR: 99.25%
  - There is no probability of false alarms: birds + human voices
  - For the other three classes the probability is low (~0.3%)
  - The false omission rate is also low: ~0.2% for birds and tractors, a little bit higher for chainsaws (0.4%), lower for gunshots (0.14%) and zero for human voices
- ⇒ Proposed audio classification system can be used as a good detection system, i.e. for WID problems

# Audio Signal Classification Using Linear Predictive Coding and Random Forests

#### Lăcrimioara GRAMA, Corneliu RUSU

Signal Processing Faculty of Electronics, Telecommunications and Information Technology Basis of Electronics Department Signal Processing Group



The 9th Conference on Speech Technology and Human-Computer Dialog – July 6, 2017